Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is
11
(i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
typedef vector<vector<int> > vvi;
typedef vector<int> vi;
#define INT_MAX 0x7FFFFFFF
int minimumTotal(vector<vector<int> > &triangle) {
int n = triangle.size();
if(n==1)return triangle[0][0];
vi v(n,0);
for (int i = 0; i <n; i++)
{
v[i] = triangle[n-1][i];
}
for (int i = n-2; i>=0; i--)
{
for(int j = 0; j <= i; j++)
{
v[j] = triangle[i][j] + min(v[j], v[j+1]);
}
}
return v[0];
}
No comments:
Post a Comment